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Abstract

We consider the use of preconditioning methods to accelerate the convergence to a steady

state for both the incompressible and compressible fluid dynamic equations. We also consider

the relation between them for both the continuous problem and the finite difference approxi-

mation. The analysis relies on the inviscid equations. The preconditioning consists of a matrix

multiplying the time derivatives. Hence, the steady state of the preconditioned system is the

same as the steady state of the original system. For finite difference methods the preconditioning

can change and improve the steady state solutions. An application to flow around an airfoil is

presented.
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1 Introduction

Seymour Parter has considered preconditioning methods for numerical approximations to elliptic

partial differential equations. As an extension ofhls ideas we shall consider similar techniques for the

fluid dynamic equations. Much effort has been expended to solve the compressible steady state fluid

equations for a large range of Mach numbers. A standard way of solving the steady state equations

is to march the time dependent equations until a steady state is reached. Since the transient is

not of any interest one can use acceleration techniques which might destroy the time accuracy but

enables one to reach the steady state faster. Such methods can be considered as preconditionings

to accelerate the convergence to a steady state. For the incompresible equations the continuity

equation does not contain any time derivatives. To overcome this difficulty, Chorin [2] added an

artificial time derivative of the pressure to the continuity equation together with a multipUcative

variable,/_. With this artificial term the resultant scheme is a symmetric hyperbolic system for the

inviscid terms. Thus, the system is well posed and and numerical method for hyperbolic systems

can be used to advance this system in time.. The free parameter _ is then chosen to reach the steady

state quickly. Later Turkel ([15], [16]) extended this concept by adding a pressure time derivative

also to the momentum equations. The resulting system after preconditioning is no longer symmetric

but can be symmetrized by a change of variables.

It is well known, that it is difficult to solve the compressible equations for low Mach numbers.

For an explicit scheme this is easily seen by inspecting the time steps. For stability, the time step

must be chosen inversely proportional to the largest eigenvalue of the system which, for slow flows,

is approximately the speed of sound, c. However, other waves are convected at the fluid speed, u ,

which is much slower. Hence, these waves don't change very much over a time step. Thus, thousands

of time steps may be required to reach a steady state. Should one try a multigrid acceleration one

finds that the same disparity in wave speeds slows down the multigrid acceleration. With an implicit

method an ADI factorization is usually used so that one can easily invert the implicit factors. The

use of ADI introduces factorization errors which again slows down the convergence rate when there

are wave speeds of very different magnitudes [12] .

For small Mach numbers it can be shown ([5],[7],[9]) that the incompressible equations ap-

proximate the compressible equations. Hence, one needs to justify the computational use of the

compressible equations for low Mach flows. We present several reasons why one would still use the

compressible equations even though the Mach number of the flow is small.

• There are many highly efficient compressible codes available that could be used for such

problems especially in complicated geometries.

• For low speed aerodynamic problems at high angle of attack most of the of the flow consists

of a low Mach number flow. However, there are localized regions containing shocks.

In many problems thermal effects are important and the energy equation is coupled to the

other equations. Then, the compressible equations must be used even for low Mach number
flOWS.

Therefore, one wants to change the transient nature of the system to remove this disparity of the

wave speeds. Based on an analogy with conjugate gradient methods such methods were called [15]

preconditioned methods since the object is to reduce the condition number of the matrix. Another

approach, in one dimension, is to diagonalize the matrix of the inviscid term. One can then use a

different time step for each equation, or wave. Upon returning to the original variables one finds

that this is equivalent to multiplying the time derivatives by a matrix. Hence, this same approach



is named characteristic time stepping in [17]. In multidimensions one can no longer completely

decouple the waves and so the characteristic time stepping is only an approximation.

Thus,: for both the incompressible and compressible equations we will consider systems of the
form

wt +f_ +gy = 0,

This system is written in conservation form though for some applications this is not necessary. Our

analysis will be based on the linearized equations so that the conservation form does not appear

in the analysis though it does appear in the final numerical approximation. This system is now

replaced by

P-Zw_ + f= + gy = 0,

or in linearized form

P-lwt + Aw_ + Bwy = O, (1)

with A and B constant matrices.

In order for this system to be equivalent to the original system, in the steady state, we demand

that P-_ have an inverse. This only need be true in the flow regime under consideration. We shall

see later that frequently P is singular at stagnation points and also along sonic lines. Thus, we

will temporarily consider strictly subsonic flow without a stagnation point. For transonic flow it is

necessary to smooth out the singularity in a neighborhood of the sonic line. We also assume that
the Jacobian matrices A = 0_L and B = _ are simultaneously symmetrizable. In terms of theaw _w
'symmetrizing' variables we also demand that P be positive definite. We shall show later, in detail,

that it does not matter which set of dependent variables are used to develop the preconditioner.

One can transform between any two sets of variables. Popular choices are two out of density,

pressure, enthalpy, entropy or temperature in addition to the velocity components. Thus, when

we are finished we will analyze a system which is similar to (1), where the matrices A and B are

symmetric and P is both symmetric and positive definite. Such systems are known as symmetric

hyperbolic systems. One can then multiply this system by w and integrate by parts to get estimates

for the integral of wt2, i.e. energy estimates. These estimates can then be used to show that the

system is well posed (see e.g. [5]). We stress that if P is not positive then we may change the
physics of the problem. For example, if P = -I then we have reversed the time direction and must

therefore change all the boundary conditions. Hence, to be sure that the system is W_I posed with

the original type of boundary conditions we shall only consider the symmetric hyperbolic system.

With these assumptions the steady state solutions of the two systems are the same. Assuming

the steady state has a unique solution, it does not matter which system we march to a steady state.

We shah later see that for the finite difference approximations the steady state solutions are not

necessarily the same and usually the preconditioned system leads to a better behaved steady state.

2 Incompressible equations

We first consider the incompressible inviscid equations in primitive variables.

ux + vy = 0

ut + uux + vuy + p_ = 0

vt -{-uvx -4-vvy + py -_ 0

2



Weconsidergeneralizationsof Chorin'spseudo-compressibilitymethod[2]. Usingtheprecondition-
ing suggestedin [15](with _ = 1) we have

or in conservation form

1

-_pt+ux+v_ = 0

-_pt + ut + uux + vu_ + P_ = 0

v

"_Pt + Vt + UVx + Vv_ + P_ = 0

(2)

i,eo

1

-_pt + ux + v_ = 0

2u

_p_ + _ + (_ + p)x+ (_v)_ = o
2v

_p_ + _ + (_)_ + (_ + p)_ = o

We can also write (2) in matrix form using

p-l= u/_ 2 1 0 , P= -u 1 0

v/_ _ 0 1 -v 0 1

(lj 2oo)(p)(olo)(p)(oolull_ 2 1 0 u + 1 u 0 u + 0 v 0

vl/_ 2 0 1 v t 0 0 u v x 1 0 v
)(p)u --0

v
y

(3)

Multiplying by P we rewrite this as

wt + PAw_ + PBw_ = O.

We also define

D = wlA +w2B - 1 <_ wl,w2 <_ 1

where wl, w_ are the Fourier transform variables in the x and y directions respectively. The speeds

of the waves are now governed bythe roots of det(AI - PAw1 - PBw2) = 0 or equivalently

det(AP -1 - Awl - Bw2) = O. Let

q -- ty._ 1 _ vw2.

Then the eigenvalues of PD are

do= q (4)

d_- = -I-/_



and so the 'acoustic' speed is isotropic.

The spatial derivatives involve symmetric matrices, i.e. D is a symmetric matrix but P is not

symmetric. Thus, while the original system was symmetric hyperbolic the preconditioned system

is no longer symmetric. In [15] it is shown that as long as

> (u2 + v2)

then the equations can be symmetrized. On the other hand the eigenvalues are most equalized if

f12 = (u 2 + v 2) [15]. Hence, we wish to choose/?2 slightly larger than u 2 + v 2. However, numerous

calculations verify, that in general, a constant/? is the best for the convergence rate. The reasons
for this are not clear.

We wish to stress that/? has the dimensions of a speed. Therefore, /? cannot be a universal

constant. There are papers that claim that/? = 1 or/? = 2.5 are optimal. Such claims cannot be

true in general. It is simple to see that if one nondimensionalizes the equation then/? gets divided

by a reference velocity. Hence, the optimal 'constant'/? depends on the dimensionalization of the

problem and in particular depends on the inflow conditions. In many calculations the inflow mass

flux is equal to 1 or else p + (u 2 + v2)/2 = 1. Such conditions will give an optimal/? close to one.

However, if one chooses the incoming mass flux as ten then the optimal/? will be larger.
We next define the Bernoulli function

H = p + (u 2 + v2)/2.

Bernoulli's theorem states that for steady inviscid flow H is constant along streamlines. We now

multiply the second equation of (2) by u and the third equation of (2) by v and add these two

equations. If 8 2 = u 2 + v2, the result is

Ht + uHx + = 0. (5)

Thus, by altering the time dependence of the equations we have constructed a new equation in

which H is convected along streamlines. Furthermore, if H is a uniform constant both initially and

at inflow then H will remain constant for all time. On the numerical level this will usually not be

true because of the introduction of an artificial viscosity or because of upwinding. For viscous flow,

(5) is replaced by

1

Ht + uHx + vHu = .-_e(UAu + vAv)

We note that these relationships for H follow from the momentum equations and do not depend

on the form of the continuity equation. Hence, we consider the following generalization of (2)

1

-_Pt + aHt + uz + v_ = 0
O_u

-'_pt + ut + uuz + vuy + Pz = 0
_V

"-_pt + vt + uvx + vvy + py = 0

where, a is a free parameter. The eigenvalues of PD are independent of the parameter a and are

given by (4). For a = 0, c_ = 1 we recover our original scheme. For a = -1 the time derivative of

the pressure no longer appears in the continuity equation. For general/3 we have

4



°°)p-I = _" av 0 ,0 2

1 tt_U'V

p=_ -o_u l+a-
_o_t, 1 +

u _ +v 2 = _2 V2
where d = 1 + a - aa_-3_- and we require that d _> 0. If/_2 + and a = 1 then

U 2 + V 2 --aU --a_2 )
p= -u 1 + u-r4-D-

In [16] an analogy to the symmetric preconditioning of van Leer, Lee and Roe was constructed for

the incompressible equations. If we choose a = 1, a = 1 we get this preconditioning of van Leer

et.al., i.e. P is symmetric.
These examples show that the preconditioning is not unique. If fact, since the determinant of the

transpose of a matrix is equal to the determinant of the original matrix it follows that the transpose

of P is also a preconditioner with the same eigenvalues for the preconditioned system. In general,

these various systems will have similar eigenvalues but different eigenvectors for the preconditioned

system. Numerous calculations show that the system given by P in (2) is more robust and converges
faster than that with the transpose preconditioner. This shows that it is not sufficient to consider

just the eigenvalues but that the eigenvectors are also of importance. However, even when P is

symmetric PD is not symmetric and so the eigenvectors of the preconditioned system do not form

an orthogonal basis.
We next examine some general form that the preconditioner can have. For this analysis it is

easier to use streamwise coordinates as suggested in [17] and so v = 0. Let u. be some normalization

of the velocity components, then

(0 0) (0A= u. u 0 , B= 0

0 0 u u.

0 0

0 0

Then the "convective" eigenvector for the non-preconditioned system is

(0)_2

--W1

The "acoustic" eigenvectors are given by

-,,,,,t +ff(,,,,o, )2+4,,I ) (u,wl2
U,_2

- V(,,,o,)'+4,,I
2

U,_I

U,OJ 2

)



We now consider preconditioners of the form

a b 0)
P= c d 0 . (6)

0 0 1

Let D = wlA +w2B , w_ +w_ = 1. We want the eigenvalues of PD to be wlu, 4-u. This gives
us three relations for the four unknowns:

u 2
a_

(b + c)u. + du = 0

u2 d- bcu_ - u 2

The values suggested in [15] are b = 0,c = -_ d = 1 while the values suggested in [17] are1l, '

b = c = u.__ d = 2 We next present the eigenvectors of PD in terms of the elements of P. We
tgtt ' *

exclude the case w2 = 0,w_ = 4-1 as in this case PD has a double eigenvalue u and the eigensystem

completely changes. Then the "convective" eigenvector is

( 0 )
-(1 + b_")_l

The "acoustic" eigenvectors are given by

u.(a + bw_) - u.(b + c)0) 1 , u.(a + bid12) -4- u.(b -4- c)¢dl •

(u.bwl + u)w2 (u.bwl - u)w2

We note that the convective eigenvector is the same as before the preconditioning for the choice

b = 0. The two acoustic eigenvectors are orthogonal to each other if we choose b = 0 and c2 =

_,---_. This is similar, but not identical, to the choice suggested in [15]. There is no way to make

the convective eigenvector normal to both acoustic eigenvectors for preconditioners of the form (6).

3 Compressible equations

The time dependent Euler equations can be written as

pt + upx + vpu + pa2(u_: + vu) = 0

ut+uux+vu_+P--_ = 0 (7)
P

vt + uv:_ + vvy + P--Y-Y= 0
P

St + uS_ + vSy = 0

where a is the speed of sound given by a 2 = 3_p
The form of this system is unchanged if we nondimensionalize the equations. From now on

we shall assume that u,v,p,p are nondimensional quantities where the dimensional variables are

6



nondimensionaUzedby u.,p.,p, with iv. = P.U.2. Following [5] we define _ = _a,

isentropic then

p'y

and

• If the fluid is

(s)

.=P_ (9)

Hence, as E goes to zero the speed of sound, a, goes to infinity and so the first equation in (7)

reduces to ux + % - 0.

It was pointed out in ([15], [16]) that these equations can be symmetrized by using _ as the

independent variable rather than dp. Hence, we define a new variable ¢ by de - _. For isentropic

flow both p and a are functions only of the density and so using (8, 9) this can be integrated

explicitly. This gives ¢ - _-r_. As the Mach number goes to zero ¢ tends to infinity and therefore,

Gustafsson and Stoor [5] subtract a constant and define

This amounts to specifying the constant in the integration of de from dp. They then prove, using

energy methods, that for the Unearized equations

OPincompreasible
a¢_ ---* OZ

Since p ---*1 and using the definition of de this is equivalent to

dpcompressible _ dpincompressible.

We consider preconditionings that are a generalization of (3)

dv

dS
T,

(10)

o o o
_,_ 1 0 0 +

_ 0 10 dv
0 00 1 dS t

(voaol()+ 0 v 00 _u =0
aOvO dv

O00v dS y
aoo)(a u O 0

OOuO

O00u

The nonpreconditioned case corresponds to 82 = a 2, a = 0. Let

q -- _I 4- vw2

then the eigenvalues of PD are given by

do = q (double)

d_=1/2[(1- _+ :/a_)q ± \/((1- _ + Z2/a_)_q2+ 4(1- q_/o2:]

If we consider the special case a = 1 + _2/a2 we find that the 'acoustic' eigenvalues are given by

d± - _(1 - q2/a2)_2

7



Hence, these eigenvalues are isotropic in the limit of M going to zero. However, this eigenvalue

vanishes at the sonic line and so the matrix is singular. In general, if we demand that the acoustic

eigenvalues be isotropic then we have a singularity at the sonic line where the eigenvalues cannot

be isotropic. The two ways out of this difficulty are either to smooth the formulas near the singular

line or else to give up on isotropy. This difficulty is not a property of the preconditioning just

presented but applies equally to all preconditioners.

We now consider the system (7) in conservation form.

where

p, + (pu)= + (pv)_ = 0
(p.), + (p_s +,)= + (p_v), = 0

(pv)t-I- (puv)x ._-(pv2 + p)y = o

E, + (pZ.)= + (pZv)_ = o

p u s + v s
E - +_

7-1 2

• E+p a 2
H = _=_+_

p 7-1

u 2 + v 2

Note that the Bernoulli function H is not identical with H for the incompressible equations. How-

ever, we again have that for steady inviscid flow H is constant along stream lines. We now pre-

condition the density and the energy equations in the following consistent manner. Let ¢ be any
variable we choose. Then we consider

(¢z), + (.z=)_ + (.Hv)_ = 0

Manipulating these equations gives

Ht + uHx + vH_ = O

i.e. the total enthalpy, H, is simply convected in time along streamlines as we obtained for H in the

incompressible case. It is interesting to observe that in the incompressible case we achieved this
by preconditioning only the momentum equations while for the compressible flow we achieve this

by preconditioning the continuity and energy equation. Of course, for isentropic flow the energy

equation is not independent of the other equations and the result is not surprising.

For the finite difference equation this implies:::that the artificial viscosity for:the continuity

equation should be based on ¢ and for the energy equation on CH. If we choose ¢ = p, i.e. no

preconditioning for the continuity equation then we have the same artificial viscosity as suggested

in [6] but with a different variable being advanced in time. If we choose ¢ = p then both the

continuity and energy equations are preconditioned.

We next present the van Leer-Lee-Roe preconditioning for general non-allgned flow in (_, du, dr,
variables [17].

Pv =

dS)



{ v/i--z-M _, M<I,= i, M>I;

ffZ-M-'¢, M<I,r = _/1-M -2, M>I.

At the sonic line /3 = 0 and r = 0 and the preconditioning matrix becomes singular. This

preconditioning is not unique even if one only considers symmetric preconditioners. In both these

examples the preconditioner was constructed based on using (p, u, v, S) as the dependent variables.
The reason for this choice is that the matrices are symmetric which this choice; However, if

another choice of variables is more appropriate tht introduces no difficulties. Thus, for example

[1] recommends the use of (p, u, v, T) variables for the Navier-Stokes equations. Given two sets of

dependent variables w and W let W_ be the Jacobian matrix "b%-'°wThen, we have dW = Wwdw. So

we can go between any sets of primitive variables or between primitive variables and conservation

variables. In particular since the equations are solved in conservation variables we have several

ways of going from the primitive variable preconditioner to a conservation variable preconditioner.

Thus, the choice of variables used in constructing the preconditioner is dictated by mathematical

or physical reasoning and then the preconditioner can be transformed to any other set of variables.

Construct the preconditioner matrix for the conservation variables. If W are the conservative

variables and w the primitive variables then Pconserva_i_e = (W_)-lPprimi_iw(W_) • Details

of the matrix Jacobians between various sets of variables are given in the appendix.

We calculate the residual dW in conservative variables. We then transform dW to dw as

before. Next we multiply by P and finally transform back to conservative variables dW and

update the solution. This is algebraically equivalent to the first option but requires three

matrix multiplies instead of one. However, it offers more flexibility.

• Similar to the previous suggestion we calculate the residual dW and transform to conservative

variables dw and the multiply by P. At this stage we update the primitive variables w. We

then use the nonlinear relations to construct W from w. This approach has advantages if the

boundary conditions are given in terms of the primitive variables (p or T) and so they can

be specified exactly and not approximately.

If the residual dW is kept from the conservation form but the time derivative Wt is replaced

by the time derivative of other variables, l_t this is linearly equivalent to preconditioning by
the matrix p-I 0w

--_-_.

These methods are all equivalent for linear systems and the difference between them is mainly

one of convenience. However, we shall next see that for the difference approximation these ap-

proaches are not equivalent.

4 Difference Equations

Until now the entire analysis has been based on the partial differential equation. We now make

some remarks on important points for any numerical approximation of this system.

, For an upwind difference scheme based on a Riemann solver this Riemann solver should be

for the preconditioned system and not the original scheme. In [3] plots are shown to illustrate



thegreatlyimprovedaccuracyfor low Machnumberflowswhenthe Riemannsolveris based
on thepreconditioning.

For central differenceschemesthere is a needto add an artificial viscosity• Accuracyis
improvedfor low Machnumberflows if the preconditioneris appliedonly to the physical
convectiveand viscoustermsbut not to the artificial viscosity•Volpe [19]showsthat the
accuracyof the originalsystemdeterioratesasthe Machnumberis reduced.The useof a
matrix artificial dissipation([14])shouldbebasedon the preconditionedequationsasin the
upwinddifferencescheme.Upwindschemeswithout preconditioningtend to havedifficulties
with accuracyfor low Machflows[3].

L

Hence, both for upwind and central difference schemes the Riemann solver or artificial viscos-

ity should be based on P-11PAIand not IAI. i.e. in one dimension solve wt+Pf_ = (IPAIw_)x

• For a scalar artificial viscosity IPAI is replaced by the spectral radius of PA or equivalently

the time step associated with the preconditioned matrix. This is equivalent to not multiplying
the artificial viscosity by P.

For a central difference scheme with a scalar artificial viscosity the artificial viscosity is of

the form of a high order difference of the same quantity as is advanced in time. Thus, the

continuity equation is solved for the density and so the artificial viscosity is a difference of the

density• Similarly, for the momentum equations• For, the energy equation one can base the

artificial viscosity on the energy. Alternatively it can be based on the total enthalpy which

guarantees, for inviscid flow, that the total enthalpy is constant in the steady state [6]. When

preconditioning the system one of the alternatives described above was to replace the time

derivative of the conservative quantities with the time derivative of other variables. This,

implies that the artificial viscosity should also be changed. Thus, if the continuity equation

is updated for the pressure rather than the density, then the artificial viscosity should be

based on the pressure. This is physically more reasonable for low speed flow since the density

is almost constant and so will not contribute any reasonable viscosity. Furthermore, using

a viscosity in the continuity equation based on the pressure mimics what was done for the

incompressible equations. This allows the low speed compressible equations to replicate the

results of the incompressible equations on the finite difference level. This will be discussed in

more detail in the following sections.

When using characteristics in the boundary conditions these should be based on the charac-

teristics of tile modified system and not the physical system.

When using multigrid it is better to transfer the residuals based on the preconditioned system

to the next grid since these residuals are more balanced than the physical residuals.

Preconditioning is even more important when using multigrid than with an explicit scheme•

With the original system the disparity of the eigenvalues greatly affects the smoothing rates

of the slow components and so slows down the multigrid method, [10].

As indicated above there are accuracy difflculies at low Mach numbers [19]. Some of these .

can be alleviate d by preconditioning the dissipation terms. For very small Mach numbers

there is also a difficulty with roundoff errors as _ _ oo. Several people have suggested
subtracting out a constant pressure from the dynamic pressure• A more detailed analysis

[4] suggests replacing the pressure p by 15where p = _ and e is a representative Mach
number.

10



Weconcludefrom the aboveremarksthat the steadystatesolutionof the preconditionedsys-
tem may be differentfrom that of the physicalsystem. Thus, on the finite differencelevel the
preconditioningcanimprovetheaccuracyaswellastheconvergencerate.

In theprevioussectionwestatedthat it is not important if oneupdatesa differentsetof vari-
ablesor elseusesthe conservationvariablesand compensateswith preconditioningby a matrix
multiplication. However,numericallyfor verysmallMachnumberstheentriesin theprecondition-
ing matrix canbecomeverylargeor small. Hence,it canbeadvantageousto updatethe pressure
or temperaturedirectly rather thanusinga matrix multiply for preconditioning.

5 Convergence

We have previously quoted several papers ([5],[7]. [9]), that prove the convergence of the compress-

ible equations to the incompressible equations, for isentropic flow, as the Mach number goes to

zero. For nonisentropic flow there are no formal proofs. However, it is clear that for viscous flows

that the boundary condition on the temperature, adiabatic or isothermal is very important, see

[11].
All these results refer to the time dependent physical equations. Once preconditioning is intro-

duced time accuracy is lost and one can only discuss convergence of the steady state solutions. In

this case one would hope that the time dependent preconditioned compressible equations converge

to some time dependent preconditioning of the incompressible equations. In addition, one would

also want this to be true on the numerical level. Thus, one would want to solve the preconditioned

compressible equations by some numerical technique, on a fixed mesh and compare that with the

solution of the incompressible equations on the same mesh. Mathematically, we have two limit pro-

cesses occuring: the Mach number going to zero and the mesh size going to zero. These two limits

need not commute. If one first converges the mesh size and then the Mach number it is equivalent

to the convergence proofs for the analytic case. The more interesting problem is to converge the

Mach number and then converge the mesh, i.e. we use a fix mesh as the Mach number is reduced.

In particular this requires a careful study of the viscosities introduced by the scheme. We first

consider an upwinding scheme. For the compressible case we have already noted that the Riemann

solver should depend on the preconditioned problem. One would then need to show that this Rie-

mann problem converges to a Pdemann problem for some preconditioning of the incompressible

equations. We next consider a central difference scheme with a scalar viscosity. In this case a high

order even difference of some quantity is added separately to each equation, e.g. for the incom-

pressible equations: pressure for the continuity equation, u and v for the momentum equations. For

the compressible equations one normally adds a density difference to the continuity equation. In

such a case it is obvious that the numerical scheme for the compressible equations cannot converge

to the numerical scheme for the incompresssible equations. Furthermore, for low Mach number

flows the density is ahnost constant and so the higher order difference of the density does not add

much of a viscosity to the continuity equation. As such, we conclude that the artificial viscosity

for the compressible continuity equation should be based on pressure and not density (at least for

low Mach numbers).

We shall examine the convergence a little more closely. By convergence of the compressible

equations to the incompressible equations we are merely verifying what happens to the difference

equations as the Mach number goes to zero. The convergence of the solution of the numerical

approximation to the preconditionined compressible equations to the numerical solution of the

incompressible equation is more difficult. However, we shall see that for the numerical solution the

convergence of the difference equation is nontrivial and depends on the preconditioning. For this

11



purposewe shall only consider a central difference approximation together with a scalar artificial

viscosity for the nondimensionalized preconditioned inviscid equations.

For the incompressible equations in nonconservative form we consider the preconditioned system

pt + Z2(u_ + v_)
?.t

-_'iPt + ut + uuz + vu_ + Pz
i-

V

"_-iPt + vt + uvx + vv_ + p_

= ha[(KlPz_x)_ + (K2Puuu)u]

= h 3 [(Kluxx:_)x + (K2uuuu)u]

= h3[(glv_)_ + (U2v_)_]

(11)

where each space derivative is approximated by a central difference with spacing h in each direction.

The time derivatives are replaced by a multi-stage scheme. K1, K2 are the largest eigenvalues of

the coefficient matrix in the respective direction. Since we do not expect shocks we only consider

a linear fourth difference artificial viscosity and not a nonlinear second difference [6], see the result

section for more details.

We next consider the same scheme for the preconditioned compressible inviscid equations, under

the assumption that the entropy, S, is constant so that p = p(p). It easier to analyze the convergence
for the nonsymmetric form since the pressure, p, convergences and not _ see (10). For the

pa '

preconditioned continuity equation we have

Z2
+ _ [.p_+ vp_+ pa2(._+ v_)]= _3[(zlv_)_ + (K_p_)dPt

Since px = a2pz,Pu = a2p_ we can rewrite the system as

p, + fl2[(pu)_: + (pv)u)] = h3[(Klpx_:z)_: + (K2p_u)_]
U

"_Pt + ut + uux % vuy + P..._Xp... h3[(glux_:z)_: + (Z2u_)u] (12)

V

_p_ + _ + _ + ,_ + v-_p= h3[(#1_=)_ + (g_v_)_]

Comparing ill) with (12) it is obvious that if p ---* 1 as M ---* 0 then (11) converges to (12).

It is crucial for both the time derivative and the artificial viscosity in the compressible continuity

equation to be pressure based rather than density based. The preconditioning of the momentum

equations is not important for this convergence.

For the incompressible equations in conservative form we multiply the first equation in (11) by

u and add it to the second and third equations. However, we do not change the artificial viscosity.
Then

Pt + fl2(ux + vy)
2u

-_'iPt ÷ ut + (u 2 + P)z + (uv)v (13)

2V = h3
-_Pt + vt + (uv)_ + (v 2 + p)y [(Klv_:_:)_ + (K2vuuu)y ]

For the compressible equations in conservative form we have two choices. One choice is to

multiply the first equation in (11) by u and the second by p and add the two. The spatial derivatives

are then in conservation form. However, the time derivative is of the form put rather than (pu)t

= h3[(Klpxxz)x + (K2pyyy)y]

= h3[(K_u::::z)::+ (K2u_)_]

12



and the artificial viscositytermsarenot in conservationform. Hence,weinsteadchooseto apply
the preconditioningdirectly to the conservativeform. Theresultantpreconditionedcompressible
equationsin conservativeform is

p.+ _ [(pu)_+(p..).,)]
2u

_-,, + (pu).+ (pu_+,)_+(puv).,
V

_-p.+ (p..).+ (p_..)_+(p.._+,)..

= ha[(K,p=.)_ + (K_p,,,),]

= ha[(Kl(pU)=_).+ (K2(p=),_),]

= ha[(K1(pv)zzz)x+ (K2(pv)uu_)y]

(14)

Note that (14) is not equivalent to (12).

In this case we again see that (14) converges formally to (13) as M --* 0 and p --* 1. This is

because the pressure is used for the time derivative and the artificial viscosity in the continuity

equation.

This all applies to the isentropic equations. The compressible equations for nonisentropic flow

is more complicated and in fact there does not exist any proof of the convergence of the solution

of the compressible equations to the solution of the incompressible equations for this case.

6 Computational Results

We now present a calculation for two dimensional flow around an airfoil to demonstrate the previous

theory. As described above the discretization is based on the multistage time method coupled with

a central difference approximation as described in [6].

We solve the equation in conservation form based on a hybrid set of variables of those previously

considered.

Wt + P(Fx + G_) = AD = (KIQ_::)_ + (K2Q,_,)_

(;)W = pu

F = Pu2 + p' G = puv Q = pu
puv ' pv 2 + p_ ' pv

pHlu pH'v H'

where p' = p - poo, E' = %p(T - Too) - (p - p¢_) + _2 and pH' = E' + p' . We subtract the

constants to keep the quantities in scale, see (10).

p_-A.

u v 1

I 1 - C+h_ C_hoo c+hoo

-B2 1 + _ _ Bz__G+h,_ G%h_,

--B3 _B_ 1 + _ oa.__G.._h_ G+h_o
VBL 1 --B4 G+h_ G+hoo

where h = %T, G = _ A = (C+hh°°)P2,2

1
B1 -- ---

_2
1

(7 1)h
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I:lii

B2 = Bl u + _"-'_
av

Ba = Bl v + "j"i

_(u 2+ v2)
B4 - Bill+

We choose

n_ = ma_(_2 + v2,o.9(_i + vl)), _ = I

These equations are given for for the nondimensionalized variables. The nondimensionalization

affects the convergence, In some codes, p and p are fixed in the far field. This implies that the

speed of sound, a,i s also bounded. As the Much number goes to zero the pressure remains of order
1 while the velocities go to zero. Alternatively, one can nondimensionalize so that the velocities

are of order 1 in the far field and then the pressure and speed of sound go to infinity, unless one

subtracts an appropriate constant,

A typical step of a Runge-Kutta approximation is

W (k) = W (°) - akAt [DxF (k-l) + D_G (k-l) - AD] ,
L J

where D= and D u are spatial differencing operators, and AD represents the artificial dissipation

terms. The dissipation terms are a blending of second and fourth differences. That is,

(15)

where

[(_ _(',) _/,,:] Q_,j,D_Q = V= [t t i+½,j i+½,j)

and Ax, Vr are the standard forward and backward difference operators respectively associated

with the x direction. The variable scaling factor A is chosen as

1[(x=),,..++

where Ax and Au are proportional to the largest eigenvalues of the matrices A and B. For generalized

coordinates x and y are replaced by _, 17respectively. This spectral radius is now a function of the

preconditioning. Hence,
A= = p(PA) A_ = p(PB)

The coefficients e(2) and e (4} are adapted to the flow and are defined as follows:

el'2+)li..,j----a('2)max(vi_ l j, vi,j, vi+ 1j, vi+ i,j ),

Pi+_,j - 2pij + Pi-l,j

t,i,j = Pi+l,j _ 2pi,j + Pi-l,j '

r

+_::[o,(,<<,>,<,>- -'+t,UJ'
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wherep is the pressure, and the quantities _;(2) and _;(4) are constants to be specified. The operators

in (15) for the y direction are defined in a similar manner.
The second-difference dissipation term is nonlinear. Its purpose is to introduce an entropy-like

condition and to suppress oscillations in the neighborhood of shocks. This term is small in the

smooth portion of the flow field. The fourth-difference dissipation term is basically linear and is

included to damp high-frequency modes and allow the scheme to approach a steady state. Only this

term affects the linear stability of the scheme. Near shocks it is reduced to zero. For incompressible

flow shocks can only appear in the, nonphysical, transient and so the second-difference dissipation

is not important. To reemphasize, the preconditioning matrix multiplies the the flux terms but not

the artificial viscosity terms. The scaling in the artificial viscosity depends on the spectral radius of

the preconditioned matrices. If one were to use a matrix valued viscosity, [14] ,it would be related

to the absolute value of the preconditioned Jacobian matrices.

The boundary conditions at the far field boundary, for subsonic flow, are based on the one

dimensional theory of characteristics in the direction normal to the boundary. The preconditioning

changes the form of these characteristic variables. They are now given by

RI - " 2p_2 u(l-a--_-)- u(1-a c2) + ._.)/_2

= .(1 - - + ,,(1 - - + 4(1 -

where u is the component of the velocity normal to the boundary. This formulas simplify slightly

if a = 1 and more if a = 1 + _-. If we consider low Much numbers then we can approximate these

by

_ p____ pl
Rl=u

which is the same as for the incompressible case. At solid boundaries the normal momentum

equation is used which is not affected by the preconditioning.

The solution is advanced by the explicit Runge-Kutta method described above and without

any residual smoothing or multigrid. We present two calculations for invlscld flow about a NACA

0012. The first calculation is for inflow conditions M = 0.03, a = 4 ° . In this case we see

that the residual asymptotes without the use of preconditioning and that the preconditioning

dramatically increases the rate of convergence. The use of the preconditioning adds only a few

percent to the total computational time. For viscous flows the computational time required for

the preconditioning is negligible. In the second case we consider the same geometry but with an

inflow of M = 0.8, a = 1.25 ° . In this case we also see a increased rate of convergence for the

preconditioned case but not as dramatic as before.

In all cases we could not allow fl to become too small. In fact the cutoff is sufficiently large

so that fl is close to a constant. This has been observed in many central difference Runge-Kutta

codes but has not been observed in the upwind code coupled with an ADI solver [3] .

7 Conclusion

We have considered a family of matrix preconditionings for both the incompressible and compress-

ible fluid dynamic equations that generalize previous results. In both cases the wave speeds are
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f_

more equalized than for the original set of equations and so the condition number of the system is

reduced. For the compressible equations the condition is equal to 1 at a Mach number of zero and

increases as the Mach number increases. At M = 1 the condition number is infinite but it increases

at a slower rate than for the physical system.

In addition to the question of the convergence rate to a steady state we have considered the

question of the accuracy of the numerical scheme for low Mach numbers. One can prove that for the

partial differential equation that the compressible equations approach the incompressible equations

as the Mach number goes to zero. For the numerical scheme this is no longer generally true and so

the accuracy of the numerical scheme to the compressible equations decreases as the Mach number

goes to zero. One way to improve the situation is to include the preconditioning in the Riemann

solver, or equivalently, to account for the preconditioning in the artificial viscosity. For example,

for low Mach numbers the scalar artificial viscosity for the continuity equation should be based on

the pressure rather than the density.

o
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A Appendix

Let W denote the conservative variables (p,m, n, E) t, with m = pu, n = pv , let w denote the

primitive variables (p, u, v, S) t and let _b denote (p, u, v, T) t. Then

OW

Ow
1 _2_. ]

_r 0 0 cp
m

_r p 0 ---cp
!1

0 p -_
M_ __

71____+-T m n 2c_

(_'-l)(u_+v2) --(7 -- 1)_ --(_/' -- I)V 7 -- 1 )

2 ! 0 0

Ow -____, P _1 0

p pc- pc- pc"

8W

oo )
_- p 0 -T
n n

o p -?
E m n --_
P

(7-1)("_+_) -(7 - 1)u -(7 - 1)v 7 - 1 '_

2 _ 0 0

o_ -_ ; 1 0 JbW = o ;
--;" + 2p p_ pn
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